Wellbore Diagnostics & Evaluation Using Fiber-Optic Enabled Coiled Tubing

Leak Detection & Production Logging Case Studies

Agenda

- Technology & Theory
- Application of the principles
- Case Studies
 - Leak Detection
 - Flow Analysis
- Summary

Distributive Temperature Sensing

- Fiber-optic enabled coiled tubing
- No moving parts, downhole electronics, external components, etc.
- Building a temperature profile of the entire wellbore over time

- Monitoring downhole temperature
- Interpretation of the temperature response allows correlation of the anomaly

Joule Thomson Effect

- Temperature of a liquid or gas changes as a function of its pressure (constant enthalpy)
- Temperature response of flowing fluid or gas allows interpretation of flow rates
- Important for interpretation in horizontal wellbores
- ΔT= μ_{JT} ΔΡ

Applications of DTS

- Leak detection
- Flow analysis
 - Production
 - Injection
- Water detection
- Gas lift monitoring
- Matrix acidizing
- SAGD / Steam chamber monitoring
 - Well integrity

DTS Leak Detection

- Leaks are often very difficult to spot
 - Temperature alone is by no means the only/best solution
- To identify a leak, a temperature anomaly needs to be created
 - Typically by flowing fluid through the leak

- The larger the anomaly the better
 - High pressure drop with gas
 - Water/oil has smaller JT effect
 - Large leaks have smaller pressure drops across them

Case Study 1: Leak Detection

- Horizontal +/- 3500m
- Multi-stage open hole completion with debris subs and stage tool
- Multiple ball activated seats
- During fracturing operation
 - Drop ball to open the next sleeve
 - No pressure response
 - Drop a second ball
 - Still no pressure response
 - Attempt to pressure up the wellbore with no success
 - Suspected stage tool open/leaking

Case Study 1: Proposed Solution

- Run 1: Venturi & DTS
 - Attempt to capture the 2 unseated balls
 - Inject fluid and perform DTS log
 - Identify any temperature anomalies
- Run 2: Manually confirm stage tool is closed
 - Eliminate possibility of leaks through stage tool
- Run 3: DTS
 - Manually seal the ball seat that would not pressure up (seat # 9)
 - Inject fluid and perform DTS log
 - Identify any temperature anomalies

Case Study 1: Run #1 – Injection

Case Study 1: Run #1 – Warm Back

Case Study 1: Run #3 - Injection

Case Study 1: Run #3 – Warm Back

Case Study 1: Conclusions

- The first DTS measurement indicated cooling behind the completion (between stage tool and anchor packer)
 - Was not sufficient to indicate a leak
 - Less thermal conductivity between stage tool and formation
- The second DTS measurement indicated a large temperature change at frac port #17
 - Indicated the all of fluid was flowing through this leak instead of down the well
- Allows informed decision for the remaining well program

Flow Analysis - Production

- Horizontal Gas Well
- Relies on the Joule-Thomson effect
- ΔT= μ_{JT} ΔP
- Thermal model matched to DTS data
- Qualitative Analysis
- Considerations
 - Fluid production masks JT
 - Gas production JT effect
 - Flow Path

Case Study 2: Flow Analysis

- Horizontal shale gas well / +4000m PBTD
- Cemented plug and perf completion
- 8 stages and 25+ perforations
- Well flowing at an average of 46 E³m³/day (1.6 MMSCF/day)
- Objective: Production log to evaluate completion effectiveness (each stage's contribution)
- Challenges:
 - Convey logging tools through 60.3mm tubing into 139.7 mm casing
 - Sand / debris downhole can negatively affect conventional spinners
 - Risk of leaving tool segments downhole
- Perform DTS log
 - Measure equilibrium temperatures during flow period
 - Shut in well to monitor warm back
 - Match thermal model to measured temperatures
 - Correlate flow rate according to induced JT temperature change

Select Depths – Temp and Press

Case Study 2: Temperature vs Depth

Case Study 2: Thermal Model

Case Study 2: Conclusion

- Joule Thomson cooling allows correlation of flowing gas rates at each perforation
- Contribution of each stage:

Stage	1	2	3	4	5	6	7	8	Total
Contribution	8%	10%	13%	13%	17%	5%	7%	27%	100

- Indicates each stage is producing
- Uppermost stage is contributing the largest portion of gas
- Completed without long BHA tool strings

Case Study 3: Flow Analysis

- Horizontal shale gas well / +4500m PBTD
- Multi-stage open hole completion
- 14 ball activated sleeves
- Well flowing at an average of 85 E³m³/day (3.0 MMSCF/day)
- Objective: Production log to evaluate completion effectiveness (each stage's contribution)
- Challenges:
 - Sand / debris downhole can negatively affect conventional spinners
 - Risk of leaving tool segments downhole
- Perform DTS log
 - Measure equilibrium temperatures during flow period
 - Shut in well to monitor warm back
 - Match thermal model to measured temperatures
 - Correlate flow rate according to induced JT temperature change

Case Study 3: Inverted Temp Profile

Case Study 3: Temperature vs Depth

Case Study 3: Thermal Model

Case Study 3: Conclusion

- DTS measurements showed temperature responses at the sleeves
- Only 5 of the 14 fractures displayed temperature responses.
- Joule Thomson cooling allowed correlation of flow rates
- Distribution of flow:

Sleeve	4	5	7	8	11	Total
Contribution	6%	11%	20%	48%	15%	100

Completed without long BHA tool string

Summary

- DTS can be a very effective method of detecting leaks
 - Temperature response must be induced
 - The larger the anomaly the higher the certainty
 - Provides real time measurements
- Joule Thomson effect can be used to correlate flow rates based on the thermal response of flowing gas or liquids
- DTS logging can help address challenges of conventional production logging
 - Debris / sand within the wellbore
 - Change in completion or restricted profiles
 - Reduces chances of lost tools
- Candidate wells are evaluated on an individual basis
 - Production rates (Gas / Water / Oil)
 - Drawdown pressures

Thank You!

